skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hodges, Erik"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Although multiple efforts have been made to model global navigation satellite system (GNSS)-reflectometry (GNSS-R) delay-Doppler maps (DDMs) over land, there is still a need for models that better represent the signals over land and can enable reliable retrievals of the geophysical variables. Our paper presents improvements to an existing GNSS-R DDM model by accounting for short-wave diffraction due to small-scale ground surface roughness and signal attenuation due to vegetation. This is a step forward in increasing the model fidelity. Our model, called the improved geometric optics with topography (IGOT), predicts GNSS-R DDM over land for the purpose of retrieving geophysical parameters, including soil moisture. Validation of the model is carried out using DDMs from the Cyclone GNSS (CYGNSS) mission over two validation sites with in situ soil moisture sensors: Walnut Gulch, AZ, USA, and the Jornada Experimental Range, NM, USA. Both the peak reflectivity and the DDM shape are studied. The results of the study show that the IGOT model is able to accurately predict CYGNSS DDMs at these two validation sites. 
    more » « less